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Necessary and sufficient conditions for approximate linearizability are

given for E. We also give a sufficient condition for local linearizability.

Finally, we present analogous results for multi-input nonlinear discrete-
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I. Introduction

.We considerfea single-input nonlinear discrete-time system of -te form

Z: x(t+l) = f(x(t),u(t)) (1)
N RN+l IN

where xeIR N  ueIR, and f(x,u): R -IR is a C7 IRN-valued function.

i Many authors have studied (local or global) linearization (Cheng et. al.

1985, Hunt and Su 1981, Jakubczyk and Respondek 1980, Krener 1973, Su 1982)

and approximate linearization (Krener 1984) by state feedback and coordinate
r

change for nonlinear continuous-time systems. /.4n this paper .we discusses.

necessary conditions and sufficient conditions for local linearization and

approximate linearization by state feedback and coordinate change for nonlinear

discrete-time systems. Other related work on nonlinear discrete-time systems

can be found in (Grizzle 1985a, 1985b, Grizzle and Nijmeijer 1985, Monaco and

Normand-Cyrot 1983a, l983b).}YI''& )11 ~ 7 ~

Definition 1: A point (x eu e ) such that f(x eu) = xe is called an equilibrium

point.

Now consider the following linear discrete-time system E0*

E0: y(t+l) - Ay(t) +bv(t) = g(y(t),v(t)),

where
010. . .0

001

A 0. (NxN matrix)

b [1(Nxl matrix)

Similar to the continuous-time case (Krener 1984, Su 1982), we can

define local linearizability and approximate linearizability for a discrete-

Ides
time system. Let (x ,U ) be an equilibrium point of E.

e eo
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Definition 2: E is said to be locally linearizable at (xeu e ) if there

exist an open neighborhood U(IR N+l) of (x eu e) and a diffeomorphism

T:U-,T(U) such that (i) T =(Tl,T2,...,TN) are functions of xl,x2 9... 9xN

only, (ii) T(xeUe )=O(N+l)xl , and (iii) 1'of-goT.

If we let (y(t) Tv(t))T = T(x(t),u(t)), then y(t) and v(t) satisfy E0.

Definition 2 indicates that we want to find a diffeomorphism T such that

the diagram in Figure I commutes. Once we find such a diffeomorphism,

we can apply linear system theory instead of nonlinear system theory.

Definition 3: E is said to be approximately linearizable with order p if

there exist an open neighborhood U(c IRN+ l) of (Xe,ue) and a diffeomorphism

T:U -T(U) such that (i) T =(TI,T2,...,TN) are functions of x , x2 ,...,xN

only, (ii) T(xe ,ue) =0 (N+1)xl , and (iii) Tf-goT+O(x-xe,u-ue)P+l.

Thus, in Definition 3 we consider the following nearly linear discrete-

time system:

E6: y(t+l) = Ay(t) +bv(t) +O(x-xe,-u e)P+l

* where the NxN matrix A and Nxl matrix b are the same as E0' Clearly, local

linearizability at (x eu e ) implies approximate linearizability with arbitrary

* order.

In Section II, some background material is reviewed and notations are

defined. In Section III, necessary and sufficient conditions for approximate

linearizability will be given for the system (1). Also, we will give a

sufficient condition for local linearizability. We can define local

linearizability and approximate linearizability for multi-input discrete-time

systems similarly to Definitions 2 and 3. Then the multi-input case will be

discussed in Section IV.
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II. Preliminaries

In this section, notations and definitions to be used later will be

mentioned. The Kronecker product is very useful in the field of matrix

calculus (Graham 1981). First, define the Kronecker product 0 by

a a11B 8 aa126am 18q) 1

A= 21B a22B a2qB

pxq mxn ""

a pi B ap2B ... a pqB J (pm)x(qn)

where aij is the (ij)-component of the pxq matrix A.

Define the derivative of a matrix with respect to a matrix by

BB B@ B

aa11 a 2 lq

3a 8 Da B3 B

DAB= a2 1  a 22  2q

a"- ap2  .- pqB (mp)x(nq)
L el

We also define

DAB = B, DAB = DAB, and

Di+l
A B= DA(D B) for i >1.

Let h(x) be a scalar real valued function of xeIR . Then (D kh)(x) andx
(D k h)(x) are Nkxl and lxNk vectors, respectively.
xT

Fact (Vetter 1970,1971): Using the definition of Kronecker product and

derivative operations on matrices, Taylor's formula can be expressed by
e

h(x) = h(O) + 7 - (Dk h(X))x=O(XaX®-"4x)+R,+,(x*),
klk! xT ' xO 'L l 'k=l

where Rt+i(x*) is a remainder term.
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Now define the N kxNk permutation matrix U. ,i ,i k as follows:

the (a i - ) Nk - 1 +(ai2-1)N k-2 + "" +(aik-l- )N +a Ik-th column of U i 2,...,ik

is the (aI-1)Nk-l +(a2-1)N k-2 +... +(ak-l-I)N +ak-th column of NkxNk

identity matrix (INkxNk) for 1 <ala 2 •...•ak<_N (the (a i } are related to the

"base N" representation of the column). Here {i,i 2 ... ,i k  is a permutation

of {1,2,...,k}. For example, when N=2 and k=3,

U12 3 = 18x8

and
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

: 0 0 1 0 0 0 0 0

U0 0 U 0 0 0 1 0
U321 0 1 0 0 0 0 0 0

~0 0 0 0 0 1 0 0

~0 0 0 1 0 0 0 0

L, 0 0 0 0 0 0 0 1J

Let A be a pxNk matrix. Define the operator 0 by

A= A( Ui •
k! all permutations l 2•. " k

{19192, . . . 9k } of {1,2,...,kl

For example, when A is a pxN 3 matrix,

3 A A(U123 +U 132 +U2 13 +U231 +U312 +U321 ).

Let

{ f f f f N-1 afu axlo) ax(oo, ' '  (0~)1 )oo

be linearly independent; that is, they form a basis for IRN. Define

N:IR IR by (v) =eN , where v is a lxN row vector and

vT N af i-I af
I i( T,(OO)(au)(OO).

5



That is, ;(v) is the last coefficient of JT with respect to the basis

{wl~w 9... qw 1, where wi 2- 1<1 <N. Also define

: RpxN,. IRp by

I ((2)

L (v p)

where v . is the i th row of V.

6



III. Single-Input Case

In this section, our main results will be given. If f(x,u) has an

equilibrium point, without loss of generality, we can assume that f(0,0) =0;

for, if not, let x x-xe and u =u-ue . Then i(t+l)=f(x(t), (t))

_ f(X+X e,+Ue )-xe with f(0,0) =0.

Let

fl (x,u) = f(x~u),

fi+l(xu) = f(~f(x,u),O), for 1 < <N-i.

f (x,u) represents the effect of an input u at t=O on the state at t=i. fi(x,u)

is essential for solving many problems arising in discrete time nonlinear systems.

Lemma 1: Z is locally linearizable at (0,0) if and only if there exists a

C' function h:W(= ]RN)- IR such that (i) W is an open neighborhood of

OeN o-i N+1OeIRN , (ii) Du (hef ) =O on some neighborhood of OeIRN
, for 1 <i <N-l,

ax x=O

(iii) det (a(hOf)) 0,ax (0,0)

16 ax (010)

(iv) (Du(hfN f))(oO) # 0, and (v) h(O) =0.

Proof: Necessity: Suppose that Z is locally linearizable. Thus we have

a diffeomorphism T. Let h(x) -TI(x). (Since Tl(x,u) depends only on x,

we can write TY(x) instead of Tl(x,u).) Note that T2 = T lof. Since

D u(T 2 ) -O on some neighborhood of the origin, D u(TI of) =0 on some

neighborhood of the origin. From now on, for convenience, we will omit

"on some neighborhood of the origin". Note that T3 =T 2 of =Tl'f 2 .
2

(Actually, we can write T3 =TIof , because T1of depends only on x. 
But 2̂

is used, for consistency of notation.) Since Du(T 3) -O, Du(Tlof
2) s0.

Proceeding in this manner, since TN TN-l of T ... -TlIfN- and Du(TN) -

7



D u(T I f~ =-O. Thus we have shown that 0 (T Iof) -=0, for 1 <i <N-i.
-'i-iSince T is a diffeomorphism, T. =T1f for 2 < N+1, and Tl,T, 9...9TN

depend only on x,

ax x0O

D(h-f)

det ax (0,0) 0

and D ( hof # 0. Since Tl(0,0) =0, h(0) =0.

Sufficiency: Suppose that there exists h:IRN 14 -IR satisfying the given

conditions. Let T.(x) =h-f-- , for 1 <1 <N+l. Then it can be easily

checked that Tof zgoT and T(0,0) =0. Since det(( -aTu ~~ )~ #0

there exists an open neighborhood U of (0,0) such that T:U-*T(U) is a

diffeomorphism by the inverse function theorem. (Q.E.D.)

Let x )

Lemma 2: Z is approximately linearizable with order p if and only if there

exists a C~ function h:W(c IR14) -'IR such that (i) W is an open neighborhood

of OeIRN (ii) (DDu (h-f )(0,0) 2 0 (N41)jl for 1 <i <N- an0j<-i

~ax x=0

(iii) det ' ax (010) 0.

L (h )(,j
ax ~ oo

(iv) (D u(h- ?N))(Q,0 ) #0 and (v h(0) -0.

Proof: Necessity: Suppose Z is approximately linearizable with order p.

8



Let h(x) =T,(x). By definition, T of(x,u) =T2(x) +O(x,u) + . So

(D (Du(hef)) (0,0) =0 for 0<j <p-i. Note that T1°.?2 =T2of+O(x,u)p+.

Since T2of(x,u)=T 3(x) +O(x,u) p+I by definition, TiOf =T3(x) +(x,u) p+I.

Thus (DDu (hof2))(0 0) =0 for 0 <j.<p-l. Proceeding in this manner, we

can show that(DJDu(hof))(OO) 0 for 1 <i <N-i and 0 <j <p-1. Note that
DT i hoi-I

( (0,0) (h ))(0,0) for 1 i <N. Since

ax (0,0) ax x=O

aT2 (h-f)

det ax (0,0) 0, det ax )(010) 0.

L TN )(,)(L hfN1

a( 0) ax )(0,0)

It can be easily shown that TlofN(x,u)=Ti(XU) +O(x,u) p+I. Thus

(Du(hofN ))(0,0) =(DuTN+l(x'u))(O ,0) #0. Finally, h(O) =TI(0) =0.

Sufficiency: (by construction) Let

T,(x) = h(x)
p k times

k=Ii D ( )

T3(x) = " (D (h-2̂)) (xexa... ex)
k=l XT (0,0)

TN(x) = k (D'T(hofN))(OO) (xexC... ex)

TN+I (x,u) = T1 of(x'u).

Then it can be easily checked that T as defined above satisfies the

conditions of Definition 3. Q.E.D.

9



Now note that

m
(D'Du(hofi ))(O,) = Y (Bilz)(OO)(Dx h)x=O , (2)

where

1 B m ^i )T
-m, $= D&(Duf

and

i m-Z+l k1  kt-I m-Z+l-k l  ^iT k 1-k2  iT  k2-k3
Bm = .. D (D f OD (D f ODk1=I k2=1 kt=l

• DiT k -l-k( T kz-I ^iT
f ... OD & (D Df ) ... )), for I <Z<m.

(For a proof of (2), see the Appendix.) Let

A 11  A12  "'" Alk

A2 1 A22  ... A2k

Ak .

..Akl Ak2  ... Akk

where Aij is an (N-1)(N+1)'xNj+ ] submatrix defined by

i =O(N-1)(N+l)ixNJ+ l

(Bij)(O,)

(B .
A =3)( 0 ,0 ) if i >j.

13 (j+l)!

(B N1 ~oo

Let the (N-1)(N+) ixl vector 0i be defined by

10
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(B )
0 i 1,0 (0,0)

10(010)-

(See Section II for the definitions of * and .) Also, let S-

($IT a2T .. kT)T!

With these preliminaries, we can state our main theorems.

Theorem 3: Z is approximately linearizabie with order p(> 2) if and only if

(i) { ( 10o~) a ( 0 0)2- ) (o,o) ** f ) a (oo) are

linearly independent, and

Proof:

Necessity: Suppose that Z is approximately linearizable with order p.

Then there exists a function h(x) satisfying (i)-(v) of Lemma 2; in

patiulr,(D (h-f )) a )() (2-
paricuar (0,0) 2 ax x=o ax(u) ~i(~o= o

<i<Nian h~ N-i ,f~
1<<-,ad(-) (2- ) 2-I 0.

ax xO ax (0,0) (au)(010)

Assume that {(2-f)(o'of). ((o'o)~(o2 o)N-'a

are not linearly independent. Then there exists k such that 1 <k <N-i and

(fk 2f T (af ,af k-1ax (0,0) (a5u (090) J- ~J V (0,0'00) orsai cnsahs'

af N-1 af k afN-l-k+j af~
Thus ax a(0.0) J x(,0 au)(0,0)' and

juN



x ) ( = 0. This is a contradiction, which implies that

{(a) af f af N-1 af are linearly
T-(O,O),(Tx)(OO)(a.)(OO),...,,T ,(OO)(TU)(OO)}aelnry

independent.

Recall that (D (hafi))(O, 0 for m=O and

I {(2f) @f (2-D)(hf afoo) N- 0fr
1 <1i <N-I. Since ,,(0,0),(ai)(0,0)()(O,O)'au0) a''( (0)'&( ')(0, O )

are linearly independent, CD xh)x=O is uniquely determined up to a constant

multiple (i.e., (Dxh)x=0 = ac, where the scalar a(#0) is arbitrary and the
.Tafi af

Nxl column vector c satisfies c - = 0, for 0<1 <N-2,
ax, afN-I (L- (af= ,fr <N2

and cT(2-)(O,)kfj(O,O) = 1).

Now by (ii) and (iv) of Lemma 2, (D Du(hof ))(OO) = 0 for 1 <m<p-l

and 1 <i <N-i. From (2), we obtain

B1  BD (D2h)X0  1,0

B 2  5 B21,1 0 0 1,0
(Dxh)x=O - (Dlh) X0

BJ N-1 ,N-I1I,1 • 1,0

810

2,1 2 ,2 0.0
: " 0 0 (OPh)x=0 ' 0 x -I (3)

-N-l 2.0

2,1 2,2

i0 Bp-I,0

p-1 I Bp-I,2 Bp-l 'p-1

p-l,0 (0,0)
BN-1 BN-I BN-l

-l,l 8p-l,2 8p-1,p-l (0,0)

12
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Since (B10)(00) (D h)x=o = (DEDuf)(0,0) (Dhx x=O ( u (0,0))'

B 11,0

B
2

1,0 (Dlh) = IB1
x x0O

6B N-1

1,0 (0,0)

Thus the right-hand side of equation (3) is -a[(B
I)T *(aP -1)T]T = TaBT

It follows that 8p I- is in the image of the matrix on the left-hand side

of (3). However, the {D k hi are constrained because, for example,x

a2h/ax2axj = a2h/ax ax Hence, the stronger condition ap I elmage (Ap_)

holds, as is proved in the Appendix in Lemma A.2.

Sufficiency: Suppose that (i) and (ii) above are true. By (i), there
exists an Nx1 vector C such that CT( )(i (af

exst Ix ax) (0,0) (Tu)(o,o) = 0 for 0 <i < N-2
T af N- 1

and (T OO)( o)(O,O) =i. By (ii), there exist C2,C3,•..,C p such that

0 , au3

2! 2
A3! = p.

~icp

where Ci is an Ni xl vector. Let

h(x) I . T .iD(xex,..., x).
1=1 "i times

Then it can be easily checked that (DJDu(hof))(OO) =0, for 1 i <4-1

Du N I ._-T (fN-1 #f0
and Oj <_p-l. Clearly (D ,(hf))0) - (Dxh)x () (0, ) =I 0.

13



Now assume that

ax x

det a )(010) =0.

ax )(0,0)1

Then there exists k such that 1 <k <N-i and (Dlxh)T O(afk =1 ki

.c.(lhT afi orsoe k-i iT f N-i af1 T =0 f'00' ii Thus h

k- O(D h) x=0(2f) N-1 -k i (f ) =0. This is a contraction, which

implies (iii) of Lemmna 2. Hence, by Lemma 2, Z is approximately

linearizable with order p. (Q.E.D.)

Remark: Z is approximately linearizable with order 1 if and oniy if (i) of

Theorem 3 holds, just as in the contin uous case (Krener 1984).

Now a sufficient condition for local linearizability is given in the

following theorem.

Theorem 4: Suppose that f(x,u) of r is an analytic IRN -valued function.

E is locally linearizable at (0,0) if

{()O f) l*.(TOO)Tf (,) are linearly
au (0,)'a(00)au)(00)'"a(,)u00

independent, and
epnCk fralt>,weeCki

(ii) there exists k(<-o) such that ~at ( 1  fo alt>,whr ki
composed of the first k columns of A..

Proof: By (i), there exists an Nxi vector c1 such that c T(2 i afU~o,

*0 for 01 04-2 and c, T (-f)N-I 0)af)0 ) l.B 00 threxs
_~ ~ ~ a (0 1aBuiiter xs

c21c3 '...'cji such that J <-o and

14



At= -Bt, for t >j,

1
~TCj

0

0

where c. Iis an N1x1 vector. Let

I terms

h(x) =j.-c 1T (x ex 2..ex)

Then it can be easily checked that (DSD (h f1))o =0 for 1 0 <-1 and

1<i <N-I. Thus D U(h F) =-0, for 1 <1 <N-1. As in the sufficiency proof

in Theorem 3, it can be shown that h satisfies the other conditions of

Lemmna 1. (Q.E.D.)

It is easy to see that (ii) of Theorem 4 implies (ii) of Theorem 3.

Example 1: Consider the following discrete-time nonlinear system

: fXI(t+l) [X2(t)+2Y1 t)u(t)+u(t) 2 1 =f(x(t),u(t))
[x2(t+l) J [Xl(t)+u(t)J

Since (-) - ( 0) and =2)OO(2)0O 1), MI of Theorem 41is

satisfied. Note that

0 ((D CDfT) (0 )) 0 0 0i

and 01 = 3Oi for 1 >2.

15



= T (DT) 0 ~ (01 = 0011(11)(0,0), (Y~ )(0,0) 0 u"(0,0) 1o 0J [01 010 0

A1 I (B 1)(,0) 01 10]2! 11 '00 0 E 0 2

It can be easily checked that all elements of the 4-th column ofAi

are 0 for 1 >2. Thus 0-t span(C t) for t >1, where Cej is composed of the

first 4 columns of A.. Therefore (ii) of Theorem 4 is also satisfied.

Hence Z is locally linearizable at (0,0). Actually we can construct a

diffeoniorphism T =(T1,T2,T 3) in the way that is given in the proof of

Theorem 4. Since

0

~10
At 3! 8x1 S for t >I.

L* 1tT 0 tl a

42 (0 0 0 -2). Clearly c, (1 0). Thus

2 2 12

T2(x) = Tof(x,u) x- 2

x2-22

T3(x,u)=Tl.f (x,u) =X 1 +u-(x 2+2~~

Example 2: Consider

1 r~l x 2(t)+2x,(t)u(t)+xl(t) 2u~)ut 1 fxt,~
2(t+'l x1(t)+u(t)

16



Clearly (i) of Theorem 3 is satisfied, because (- J(O) and

,O)(L- )(OO) are the same as in Example 1. Since (DluufT)(0 , ) =

2 0 2]0~ 0] a1 = Z((D &D uf )(0,0) 0 ~ Since (D D uf )(0,0)=

2 0
0 0
0 0
0 0 , 20 0 , a ( 0000000 .
0 0
0 0
0 0L0 0

A= 0 1 1 0

00000000000 0 0

220001 000 00

0 0 0 0 0 0 0 0
1,1,,,, 0 0 0 0 0 1 0 0
~0 0 0 0 0 0 0 1

0 0 1 0 0 (BI

00010000 3!-" 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 100000001

0 0 0 00 1 0 0

0 020200 06

17



(B~1 ( 0  (D~ (DafT * Duf T))(O.O) +(D fT a D D f T)(

DfT,0DX D ufT'

= (D 2fT aD J)o fT) r TD DfT +( T aD DfT
& u (02 )u [(0 +(0)

L CfT a DUDUfT

0 0 00
2 00 0
0 24 0
2 00 0

1 4 0

A2 = (B21  0 0 0 0
2! (0)4 0 0 0

Since 8,e Image (Ad), Z is approximately linearizable with p=2. However,

since 8 2 J Image (A2), it is not approximately linearizable with p=3. Thus

it is also not locally linearizable. Let

2
T2  x2  1

T3 = x1+u -(x 2 +2x~u +x,2 U +u 2)2

Then

18



y1(t+1) T T1(x(t+1)) = x 2(t) +2x,(t)u(t) +X1(t) 2UMt +u(t)2 - (x1(t +u(t)) 2

- X 2(t) -xl(t) 2+x1(t) 2u(t)

= T2(x(t)) +O(x'u) 3

- Y2 (t) +O(x'u) 
3

Y2(t+1) T2(x(t+I)) = T3(x(t),u(t)) =v(t)
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IV. Multi-Input Case

The results in Section III can be easily generalized to the multi-

input case. Thus, in this section we give (without proof) a sufficient

condition for local linearizability and a necessary and sufficient

condition for approximate linearizability by state feedback and coordinate

change for a multi-input nonlinear discrete-time system (for proof, see

Lee 1986).

Consider a multi-input nonlinear discrete-time system of the form

Z: x(t+l) = f(x(t),u(t)) (4)

where x(t) eIRN, u(t) eIRm, and f(x,u): IRN+m -IRN is a C7 IRN-valued

function. Also, consider the following multi-input linear discrete-time

system Z0:

. 0: y(t+l) - Ay(t) +Bv(t) = g(y(t),v(t)),

where y(t) elRN, v(t) eDtP, A = block diag 1AIIA22,...,Amm} ,

0 0 10 . . . 0 0

001...00

A11 = (KixK i matrix),

0 0 0 ... 0 1

~m
K1 " N,

B -block diag {blb 2 ,  bm}, and

b= (0 ... 0 1)T (Kxll matrix)

Definition 4: E is said to be locally linearizable at (xeue) if there

exist indices {Klii.1 , an open neighborhood U(= IRN+m) of an equilibrium

20
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point (xes sue) and a diffeomorphism T: U -T(U) such that

(1) = CT1 S T29 ... 9T N) are functions of x1,x 2 9... ~xN only,

(ii) T(x e ,u e) = 0 (N+m)xl' and

(iii) T-f = goT.

If we let vY(t)) = T(x(t).,u t)), then y(t) and v(t) satisfy the

relation E0

Definition 5: E is said to be approximately linearizable with order p

if there exist indices {K M=.1 an open neighborhood U ( =R N) of an

equilibrium point (x elue) and a diffeomnorphism T: U -T(U) such that

(i) T~ = (Tl.T 29 ...9T N ) are functions of xl'x 2 9...9X N only,

(ii) T(x e su e) = 0 (N+m)xl' and

(iii) T-f = goT +O(x..x elu.ue )P~1.

Thus in Definition 5 we consider the following nearly linear multi-

input discrete-time system:

p+1
E6~: y(t+l) = Ay(t) +Bv(t) +O(x-xelu-uepI

where the NxN matrix A and Nxm matrix B are as in Z0

Now we state the generalized version of Lemmnas 1 and 2 and Theorems 3

and 4. Just as in the single-input case, we can assume f(0,O) =0 without

loss of generality, if f has an equilibrium point. Also, define f (x'u)

in the same way as in the previous section.

Lemmia 5: E is locally linearizable at (0,0) if and only if there exist

{K i~ and C~ functions h,(x)h2(x)'. .hm(x): W( =MN)- IR such that

(i) W is an open neighborhood of 0 eIR N,

0^1(ii) D u(h ef )-=0, for 1cJ <m and 1 cik ck-it
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ax x=0

~ax (,0)

ax )(010)
det0

ahm

(L ax (0.0)

(iv) K

(a(h 
f)

au (0,0)
det0

and

(v) h.i(0) =0 for 1 <j cm.

Let E =(xT,u T) T. Thus is a (N+m)xl vector.

Lemmna 6: Z is approximately linearizable with order p if and only if

there exist {K~ 1m and Cc* functions hl(x)xx : ~ ~N)~

such that

(1 ) W i s an open nei ghborhood of Oe RN,

(i)( u (h jf)(0,0) *0 for 1 <Jj <, 1 0<k Jk-l1, and 0 <k <p-1, and

(iii), (iv), and (v) of Lemmna 5 are satisfied.

Let

22



'faf f af af
au a1  1u ax (0,0) au (0,0) '

-) K2
-1 f af af Km'l af: •"" " 'x(o o)(a 2 aoou'" (-m)oo"" '(0,0)( -~) (o,o)

={I af f af lafKi-2 aff

E aaf af afi af

K•-2 "K, o 1-(o,o)2" '(- (o,o)' ' a (0,0) a (oo)'

i=),... ,m.

Suppose that the elements of E are linearly independent; that is,

they form a basis for IRN. Let a = Kj for l<i<m. Define~j=1
. , i RN  i %

(v): IN -'IR by ;'(v) = a0 , where v is a IxN row vector and

T af I- K1 f af; vT = la-l)(0,0) +... +a l(,0)(a- )(,O +1I( a)00)+.

01 a a u( 0,0) au 2 (0,0) +-

+a (afK K2-1 aaff
ax2(0,0) - (0,0) 0)+ +.. +m-l+l(-m)(0,O) +.--

+ (OLaf Km-l  af

m ax (0,0) -- Um (0,0)

Also, define i. IRPxN ,IRP, for i=1,2,...,m, by

M(v) = ( i(vl) {i(v 2 ) ... i (V p))T

where v. is the jth row of V. Let

(DDufT)( )

,;: j8 = oo(jD ( I2T)

-, .'(j uK i -_1T) (0,0)-
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i TiTT
Also, let y' = ((B) (B.)T (0k) ) Let

11 121
t- D 12 Dl1

D k l 22 2

D1  D Dk k2 ... kk

where Dij= 0 m(k )(N+m)ixN J 1 if i <j, and

V. .)

(8 1 )
ii (0,0)

(82)
iC (010)D.Z  00 if i >j

13 (j+l)!.

(B - )(0,o)

Theorem 7: E is approximately linearizable with order p(.>2) if and only

if there exist {KiM= such that

(i) the elements of E are linearly independent,

(ii) span Ei = span (Ein E) for 1 i <m, and

(iii) Yp-1 e Image (Dp_1 ) for 1 <ft<m.

Remark: E is approximately linearizable with order I if and only if (i)

and (ii) of Theorem 7 hold, just as in the continuous time case [6]. If

m=l (single-input case), K IN. Thus (i) of Theorem 7 is the same as (i)

of Theorem 3. Since EI =E1fn E, (ii) of Theorem 7 is trivially satisfied.

Since the operator ;I is the same as the operator C in the previous section,

SI Since D1  (iii) of Theorem 7 is the same as (ii) ofYp- -1, Pl -I p-1'

Theorem 3. Therefore, Theorem 7 is a generalized version of Theorem 3.

Now a sufficient condition for local linearizability is given in the
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following theorem.

Theorem 8: Suppose that f(x,u) of E is an analytic IRN-valued function.

E is locally linearizable at (0,0) if

() the elements of E are linearly independent,

(ii) span Ei = span (Ei nE), for 1 <i <m, and
(iii) there exists k(E<-) such that yfor 1 <<m and

i >1, where (Ft)k is composed of the first k columns of Di.
Km

Given the system (4) we choose the Kronecker indices [K 01i= in a

similar way to the continuous time case (Hunt and Su 1981). First we form

the matrix

a_)af af
,0 ) ) (.-2) (0,0)) . ) (If , )

ax (0,0) (0af 0 af0 af af af

ax)(O,O)au-1)OO ( 0)( ,O)(au2)O O --- , ),(OO0),T- m,(O,0) -

Set a = number of linearly independent vectors in the first (1+1) rows,

for 0<1 <N-l. Take yo-caO and y1 =cti -ai- for 1<1 <N-l, and define

Ki to be the number of yj with yj >i.
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Appendix

Lemmna A.l: The equation (2) holds.

Proof: Clearly,

m i m tl
Dm D (ho ) = I (B) (D h)xu n

(hf (B 1,1(x,u)( x i(x~u)
i =0 M

where {8 Iare to be determined. Then

B =D(B' A1

ii^.T i
4B'~~ D C(B )' +D f~ 0B Mtlfor 1 <tZ<m, (A.2)

B' = ^T (A.3)rn+l,m+l -D( C mm

BY (A.1), since B' 0 = z B1M, = Dm&D uf1  for m >1. Note that (2) is

true when rn-I. Now suppose that (2) is true for m <p. Let I <t<p. Then,

by (A.2)11

B =~ D &(B1 P' D&f 0BP11

P-L+l k I k1 l -~-l l k 2 .. ̂Tk -k

k 1=1 k2= 1 k t=1E

*(DTT kt-li T p+1-t+l k1 kZ2 ^ +-~-
Df eD~ D f1 )...)) + I. I I 0 f' *0pD 1lI

T k k i T kl t- 2 - -k1 1 l -

Changing the dummny variables k1sk 2 9... sk 11 of the second term into

k 2*k 3 9...,kt, respectively, the second term becomes
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P+I-t~~l D f'l ,DTP+l-t+l-k2(D f i T Dk-k3(D f' * . Dkt1
k 2-1 k3=1 ke =l 1

A1 T kt~ 1 T

p+1-Z+1 k 1  k 2  k l PItll

k P+1-&l+ k =1 k 'l kt-l

jT k I-k 2(DiT k 2-k3 ~ 1T k t I- k t T k t-l~i T

( %f

Thus (2) is true for m =p+l and 1 It lp. By (A.3), it is easy to see that

(2) is true for m =t=p+1. Hence (2) is true for m =p+1. By induction,

(2) is true for m >1.

Let h(x): IR IR be a C7 function.

Lenmma A.2: If

(S 1 S2 -* Sk (D 3h)o dpi (A.4)

6(D ~h)x x0O

where S.i is a pxN i matrix for 1 01 <k, then d elmage (B), where B8

2! 3! (k+l)!

Proof: (A.4) is equivalent to

1j( 2 hXO +S 2(D 3h)ZO +... +S k(D lh) d

Consider

Si(D xh)x. -d'
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Note that ah W h . = h. for 1 <1<N and 1 <j <N.k ax.xO i ji ax jT ax =O -

Let (s 0 1 be the ith column of S 1. Then, sinceh i'h ,

S )N h +N N
1X = (sl )(al)I Iaa+Us

a ~ ~~~ 1- 1) ~ I81 IaI=1 a 2'a,+1 1(,lNa

+( (a2-I)N+a1 1 2ad.

Therefore, d' e span (Q), where

N N N
Q ( U U {sa +1)U( U { )

a I=1 a82=a81+1 a1-1)N+a 2  s(a 2-I)N.aI a1= I.{(a I-1)N+a I

Now consider the matrix S i defined by

Si = * = S l U 2 + 2 )
2!

It is easy to see that the (a I- )N+a 2-th column ofS

(s ) if a fa
I (a-)~ ( (a2-l)N+a1' fa 1 a2

where 1 *<ja1.N and I <a 2<N. Clearly Image (Si) -span (Q). Similar

arguments can be applied for (D~h)x,Oq... q(Dkxlh) xO* Therefore,

d e Image (B). (Q.E.D.)
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